
A Type�Based Approach to Program Security�

Dennis Volpano� and Geo�rey Smith�

� Department of Computer Science� Naval Postgraduate School� Monterey� CA
������ USA� email� volpano�cs�nps�navy�mil

� School of Computer Science� Florida International University� Miami� FL ��	���
USA� email� smithg�cs�
u�edu

Abstract� This paper presents a type system which guarantees that
well�typed programs in a procedural programming language satisfy a
noninterference security property� With all program inputs and outputs
classi
ed at various security levels� the property basically states that a
program output� classi
ed at some level� can never change as a result of
modifying only inputs classi
ed at higher levels� Intuitively� this means
the program does not �leak
 sensitive data� The property is similar to
a notion introduced years ago by Goguen and Meseguer to model secu�
rity in multi�level computer systems ���� We also give an algorithm for
inferring and simplifying principal types� which document the security
requirements of programs�

� Introduction

This paper presents a type system for a procedural language that guarantees
that well�typed programs respect the security levels of the variables they manip�
ulate� More precisely� it guarantees that well�typed programs are noninterfering �
which basically means that high�security inputs cannot a�ect low�security out�
puts� Goguen and Meseguer introduced the idea of noninterference years ago as
a notion of security for multi�level computing systems ���	 this papers applies
the notion to programming languages� Our type soundness theorem is a proof
that every well�typed program has the noninterference property� The proof de�
pends on two lemmas that� interestingly� turn out to be typing analogs of two
properties known for years within the security community as the simple security
property and the con
nement property �also known as the ��property�� These
are properties of the Bell and LaPadula model� developed in the early �
�s as a
model for multi�level security ����

In an earlier work ����� we presented a type system to guarantee noninter�
ference in a simple imperative language� In this work� we extend the analysis to
a language with
rst�order procedures� which can be used polymorphically with
respect to security classes� Also� we address the type inference problem here�

We begin with an overview of the type system� Then we formally present
the system and prove its soundness relative to a standard natural semantics�

� Proceedings of TAPSOFT ���� Colloquium on Formal Approaches in Software En�
gineering� Lille France� 	��	� April� 	����

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 APR 1997

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A Type Based Approach to Program Security

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science Department Naval Postgraduate School Monterey, CA
93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

In Section �� we turn our attention to type inference and type simpli
cation�
Finally� we sketch some related e�orts and some future research directions�

� An Overview of the Type System

Noninterference was introduced as a model of security for multi�level computing
systems ���� The basic idea is that a system has users� some of whom supply
high�level inputs and others who supply low�level inputs� Low�level users are
only allowed to see low�level system outputs� �For the sake of simplifying the
discussion� we shall consider only two security levels� low and high�� Such a
system has the noninterference property if no matter how the high�level inputs
change� the low�level system outputs remain the same�

The idea can also be applied to programming languages� Intuitively� the
notion is that high�level program inputs can be altered without a�ecting any low�
level outputs� As a simple example� consider a procedure with just two formal
parameters x and y�

proc P�inout x � low � inout y � high�	

Here x and y are treated as variables with security levels low and high respec�
tively� Suppose the calls P �u � low � v � high� and P �u � low � w � high� terminate
with some
nal values for u� v� and w� The
nal values of v and w may di�er�
But if P is noninterfering� the
nal value of u will be the same in both cases�
Our type system guarantees that well�typed programs are noninterfering�

��� Types

The types of the system are strati
ed into three levels� There are the � types�
which are the security levels� the � types� which are the types of expressions and
commands� and the � types� which are the types of phrases� The security levels
are assumed to be partially ordered by �� For example� one might have low �
high� trusted and untrusted such that low � high and trusted � untrusted � The
relation � is extended to a subtype relation � over the phrase types�

Our phrase types are similar those of Forsythe ����� except that our command
types are parameterized� A command type has the form � cmd 	 the intuition
behind it is that a command c has this type only if every assignment in c is to a
variable whose security level is � or higher� So if a command has type high cmd �
then it does not contain any assignments to low variables� Other phrase types are
the types of variables� written � var � and the types of acceptors� written � acc�
A variable of type � var stores information whose security level is � or lower� An
acceptor is a write�only variable� used to type the out parameters of procedures�
A variable is implicitly dereferenced� so there is a rule for converting � var to � �
Likewise� there is a rule for converting a variable type to an acceptor type� which
is necessary in the left sides of assignments and in procedure calls involving
out parameters� The subtype relation is contravariant in both command and
acceptor types�

��� The Core Language and Typing Rules

The typed language is a core imperative language with procedures	 however�
procedures are not
rst class values� Inspired by Denning�s program certi
cation
rules ���� we have developed typing rules that ensure noninterference�

For instance� suppose that l and h are variables and that the identi
er typing
� gives l type low var and gives h type high var � Then the assignment l �� h
must be rejected� since a change in the initial value of h will a�ect the
nal value
of l� This is what Denning termed an explicit �ow from h to l� So we introduce
the following typing rule�

� � e � � acc� � � e� � �
� � e �� e� � � cmd

This rule requires variables l and h in our example to agree on their security
levels� Since they do not agree� even using subtyping� the assignment is rejected�
On the other hand� h �� l is accepted� Since low � high � we can coerce the type
of l from low to high to get agreement� allowing the assignment to be given type
high cmd � Alternatively� we can coerce the type of h from high acc to low acc

to give the assignment type low cmd �
It is worth pointing out that subtyping is neither covariant nor contravari�

ant in variable types� because a variable is both an expression �which behaves
covariantly� and an acceptor �which behaves contravariantly�� Hence low var is
unrelated to high var �

As another example� suppose we try to copy h to l indirectly as follows�

while h �
 do
l �� l � �	
h �� h� �

od

Again the
nal value of l is a�ected by the initial value of h� This is what Denning
termed an implicit �ow from h to l� Thus� the typing rule for while insists that
the guard and body of the loop be typed at the same security level�

� � e � �� � � c � � cmd

� � while e do c � � cmd

Determining whether a given program is noninterfering is� of course� unde�
cidable� As we shall see� our type system is a sound and decidable logic for
reasoning about the noninterference of a program� Therefore� it is necessarily
incomplete�some noninterfering programs are rejected by the type system�

��� Security Type Inference

Type inference in this setting attempts to prove that a program is noninterfering
and produces a principal type that succinctly conveys how the program can be
executed securely� A principal type is a constrained type scheme ���� with a

contraint set of �at subtype inequalities among security levels� Consider� for
instance� the following procedure that indirectly copies x to y�

proc �in x� out y�
letvar a �� x in
letvar b ��
 in

while a �
 do
b �� b� �	
a �� a � �	

y �� b

�The construct letvar x �� e in c allocates a local variable whose scope is c��
One principal type for this procedure is

��� 	 with � � 	
 	 proc��� 	 acc�

where � and 	 are type variables such that � corresponds to the security level
of x and 	 to the security level of y� A call to this procedure can be executed se�
curely provided that the arguments have security levels that� when substituted
for the bound variables of the type� satisfy the inequality� The call itself will
have type 	 cmd � as conveyed by 	 proc� In this sense� the procedure is poly�
morphic� The above principal type can be simpli
ed to �	
 	 proc�	� 	 acc� due
to subtyping of procedure types� As a practical matter� it is very important to
simplify the inferred principal types by exploiting the antisymmetry of � and
the monotonicities of the type constructors� Type inference and simpli
cation
are discussed in detail in Section ��

� A Formal Treatment of the Type System

The syntax of the core imperative language is given below�

�Phrase� p ��� e j c

�Expr � e ��� x j n j l j e � e� j e � e� j e � e� j

e � e� j proc �in x�� inout x�� out x�� c

�Comm� c ��� e �� e� j c 	 c� j e�e�� e�� e�� j while e do c j

if e then c else c� j letvar x �� e in c j

letproc x�in x�� inout x�� out x�� c in c�

Meta�variable x ranges over identi
ers� n ranges over integer literals and l ranges
over locations� which are used in our language for input and output� the initial
values of any locations in a program represent inputs� and the
nal values of the
locations represent outputs� �In addition� as will be seen in the natural semantics�
evaluating a letvar causes a new location to be allocated� and later deallocated��
Also� we assume for simplicity that each procedure has exactly three parameters
�one of each kind�� and we use
 for false and � for true� Finally� a phrase is
closed if it has no free identi
ers�

The types of the core language are strati
ed as follows�

� ��� s
� ��� � j � proc���� �� var � �� acc� j � cmd

� ��� � j � var j � acc

Meta�variable s ranges over a set of security levels� which is partially ordered
by �� The rules of the type system are given in Figure �� We omit typing rules
for some compound expressions since they are similar to rule �sum�� Notice that
rule �int� allows an integer literal to be given every security level� Intuitively�
a value is never intrinsically sensitive�it is sensitive only if it comes from a
sensitive location� Note also that rule �letproc� allows procedures to be used
polymorphically�The remaining rules of the type system constitute the subtyping
logic and are given in Figure ��

In the typing judgment �	 � � p � �� meta�variable � ranges over identi
er
typings and � over location typings� An identi�er typing is a
nite function
mapping identi
ers to types of the form � � � var or � acc	 ��x� is the type
assigned to x by �� and ��x � �� is a modi
ed identi
er typing that assigns type �
to x and assigns type ��x�� to any identi
er x� other than x� A location typing is a

nite function mapping locations to � types with similar notational conventions�

To facilitate the soundness proof� we introduce a syntax�directed set of typing
rules� The rules of this system are just the rules of Figure � with rules �ident��
�r�val�� �assign�� �if�� and �while� replaced by their syntax�directed coun�
terparts in Figure �� The subtyping rules in Figure � are not included in the
syntax�directed system� We write judgments in the syntax�directed system as
�	 � �s p � �� The bene
t of the syntax�directed system is that the last rule used
in the derivation of a typing �	 � �s p � � is uniquely determined by the form of
p and of �� It is also helpful in determining where coercions are needed during
type inference�

Next we establish that the syntax�directed system is actually equivalent to
our original system with respect to the � types� First we need two lemmas�

Lemma�� If �	 ��x � ��� �s p � � and � � � ��� then �	 ��x � �� �s p � ��

Lemma�� If �	 � �s p � � and � � � ��� then �	 � �s p � ���

Equivalence is now expressed by the following theorem�

Theorem�� �	 � � p � � i� �	 � �s p � ��

From now on� we shall assume that all typing derivations are done in the
syntax�directed type system� and therefore shall take � to mean �s �

� A Natural Semantics

We give a natural semantics for closed phrases� A closed phrase is evaluated
relative to a memory
� which is a
nite function from locations to integers� The

�ident� �� � � x � � ��x� � �

�var� �� � � x � � var ��x� � � var

�acceptor� �� � � x � � acc ��x� � � acc

�varloc� �� � � l � � var ��l� � �

�int� �� � � n � �

�r�val� �� � � e � � var

�� � � e � �

�l�val� �� � � e � � var

�� � � e � � acc

�sum� �� � � e � �� �� � � e� � �

�� � � e� e� � �

�compose� �� � � c � � cmd� ��� � c� � � cmd

�� � � c � c� � � cmd

�letvar� �� � � e � �� �� ��x � � var � � c � � � cmd

�� � � letvar x �� e in c � � � cmd

�assign� �� � � e � � acc� �� � � e� � �
�� � � e �� e� � � cmd

�if� �� � � e � �� �� � � c � � cmd � ��� � c� � � cmd�

�� � � if e then c else c� � � cmd

�while� �� � � e � �� �� � � c � � cmd

�� � � while e do c � � cmd

�procedure� �� ��x� � ��� x� � �� var � x� � �� acc� � c � � cmd

�� � � proc �in x�� inout x�� out x�� c �
� proc���� �� var� �� acc�

�apply� �� � � e � � proc���� �� var� �� acc��
�� � � e� � ��� ��� � e� � �� var � ��� � e� � �� acc

�� � � e�e�� e�� e�� � � cmd

�letproc� �� � � proc �in x�� inout x�� out x�� c � ��
�� � � �proc �in x�� inout x�� out x�� c�x�c

� � � cmd

�� � � letproc x�in x�� inout x�� out x�� c in c� � � cmd

Fig� �� Rules of the Type System

contents of a location l � dom�
� is the integer
�l�� and we write
�l �� n�
for the memory that assigns n to location l� and
�l�� to a location l� �� l	 thus

�l �� n� is an update of
 if l � dom�
� and an extension of
 if l �� dom�
��

Since expressions and commands are pure� our semantics uses
 � e	 n for
the evaluation of an expression and
 � c	
� for the evaluation of a command�
Commands are nonexpansive in that dom�
� � dom�
��� We let
� l stand for

 with location l removed from its domain�

�base� � � � �

� � � � �

�reflex� � � � �

�trans� � � � ��� � �� � ���

� � � ���

�acc�� � � � � �

� � � acc � � acc

�cmd�� � � � � �

� � � cmd � � cmd

�proc� � � �� � ��� � �� � � ��� � � � � �

� � proc���� �� var � �� acc� � � � proc�� ��� �� var� �
�

� acc�

�subtype� ��� � p � �� � � � ��

��� � p � ��

Fig� �� Subtyping rules

�ident�� ��x� � �� � � � �

��� � x � � �

�r�val�� ��� � e � � var� � � � �

��� � e � � �

�assign�� ��� � e � � acc� �� � � e� � �� � � � �

��� � e �� e� � � � cmd

�if�� ��� � e � �� �� � � c � � cmd� ��� � c� � � cmd� � � � �

��� � if e then c else c� � � � cmd

�while�� ��� � e � �� �� � � c � � cmd� � � � �

��� � while e do c � � � cmd

Fig� �� Syntax�directed typing rules

The evaluation rules are given in Figure �� We write �e��x�e to denote the
capture�avoiding substitution of e� for all free occurrences of x in e� Note the
use of substitution in rules �call�� �bindvar� and �bindproc�	 this allows us
to avoid environments and closures in the semantics�

� Type Soundness as Noninterference

In this section� we establish the semantic soundness of our type system by proving
a noninterference theorem� Before proving soundness� we require some lemmas
that establish useful properties of the type system and semantics�

Lemma� �Expression Substitution�� If �	 ��x � � � � p � �� then �	 � �
�n�x�p � �� and if �	 � � l � � and �	 ��x � �� � p � ��� then �	 � � �l�x�p � ���

�val� � � n� n

�contents� � � l � ��l� l � dom���

�add� � � e� n� � � e� � n�

� � e� e� � n� n�

�sequence� � � c� ��� �� � c� � ���

� � c � c� � ���

�branch� � � e� 	� � � c� ��

� � if e then c else c� � ��

� � e� �� � � c� � ��

� � if e then c else c� � ��

�call� � � e� n� � � �n� l� l��x�� x�� x��c� ��

� � �proc �in x�� inout x�� out x�� c��e� l� l��� ��

�update� � � e� n� l � dom���

� � l �� e� ���l �� n�

�bindvar� � � e� n� l is the
rst location not in dom����
��l �� n� � �l�x�c� ��

� � letvar x �� e in c� �� � l

�loop� � � e� �
� � while e do c� �

� � e� 	� � � c� ��� �� � while e do c� ���

� � while e do c� ���

�bindproc� � � �proc �in x�� inout x�� out x�� c�x�c� � ��

� � letproc x�in x�� inout x�� out x�� c in c� � ��

Fig� �� The Evaluation Rules

Lemma	 �Simple Security�� If �	 � � e � � � then for every l in e� ��l� � � �
and for every x free in e� ��x� � � �

Lemma
 �Con�nement�� If � � c � � cmd�
 � c 	
�� dom��� � dom�
��
and l is a location assigned to in c� then ��l�
 � or
��l� �
�l��

Now we are ready to prove the soundness theorem�

Theorem� �Noninterference�� Suppose

�a� � � c � ��
�b�
 � c	
��

�c� � � c	 ���

�d� dom�
� � dom��� � dom���� and
�e� ��l� �
�l� for all l such that ��l� � � �

Then ���l� �
��l� for all l such that ��l� � � �

In the absence of procedures� this theorem can be proved directly ����� Here�
however� we prove the Noninterference Theorem as a corollary to the following
theorem� whose proof is omitted due to space restrictions�

Theorem
� Suppose

�a� �	 �x� � ���

 � xk � �k� � c � ��
�b�
 � �n��

 � nk�x��

 � xk�c	
��

�c� � � �n�

�
�

 � n�

k
�x��

 � xk�c	 ���

�d� dom�
� � dom��� � dom����
�e� ��l� �
�l� for all l such that ��l� � � � and
�f� �� �i � � � for all i such that � � i � k�

Then ���l� �
��l� for all l such that ��l� � � �

It is well known that polymorphic variables can easily break traditional forms
of type soundness ����� The same is true of a security type system� Giving a
variable polymorphic type opens the door to �laundering�� It would be possible
to store high informationand retrieve it as something low� But soundness can also
break in more subtle ways due to mutable objects� like variables and
rst�class
references� coupled with higher�order polymorphic procedures� It is interesting
to note that if the core language were extended with these features� then existing
techniques such as weak types ���� or limiting polymorphism to values ���� could
be used to preserve soundness�

� Type Inference

For the sake of describing type inference in this setting� we need to introduce
extended types that can contain type variables ��� 	�

 � in place of security
levels� We use metavariables b� � b�� and b� to range over extended types� Also� we
use b� to range over extended identi
er typings that map identi
ers to extended
types	 FTV �b�� gives the set of free type variables of b��

A type inference algorithm W � de
ned by cases on the phrases of the lan�
guage� is given in Figures � and �� It takes as input a location typing �� an
extended identi
er typing b�� a program phrase p� and a set V of type variables�
which represents the set of �stale� type variables	 this allowsW to choose �fresh�
type variables as necessary� If it succeeds� then it returns a set of �at subtype
inequalities C� an extended type b�� and an updated set V � of stale type vari�
ables� Note that the constraint b� � b� � abbreviates the two inequalities b� � b� �

and b� � � b� �
We now establish the correctness of algorithm W � An instantiation I is a

mapping from type variables to �ordinary� � types� It can be applied� in the usual
way� to extended types� to extended identi
er typings� and to sets of inequalities
among extended types�

Lemma�� If FTV �b�� � V and �C� b�� V �� � W ��� b�� p� V � succeeds� then V �

contains all type variables in C� b�� and V �

W ���b�� p� V � � case p of

x � case b��x� ofb� � �fb� � 	g� 	�V � f	g� 	 �� Vb� var � �fb� � 	g� 	� V � f	g� 	 �� V
default � fail

n � �f g� 	�V � f	g� 	 �� V

l � �f��l� � 	g� 	� V � f	g� 	 �� V

e� � e� �
let �C��b��� V �� � W ���b�� e�� V �
let �C��b��� V ��� � W ���b�� e�� V ��
in �C� �C� � fb�� � b��g� b��� V ���

proc �in x�� inout x�� out x�� c �
let �C�b� cmd � V �� � W ���b��x� � 	�x� �
 var� x� � � acc�� c� V � f	�
� �g�
in �C�b� proc�	�
 var� � acc�� V �� 	�
 and � �� V

c�� c� � let �C��b�� cmd� V �� � W ���b�� c�� V �
let �C��b�� cmd� V ��� � W ���b�� c�� V ��
in �C� �C� � fb�� � b��g� b�� cmd � V ���

if e then c� else c� �
let �C�b� � V �� � W ���b�� e� V �
let �C��b�� cmd� V ��� � W ���b�� c�� V ��
let �C��b�� cmd� V ���� � W ���b�� c�� V ���
in �C �C� �C� � fb� � b�� � b��� 	 � b�g� 	 cmd� V ��� � f	g� 	 �� V ���

while e do c �
let �C�b� � V �� � W ���b�� e� V �
let �C ��b� � cmd� V ��� � W ���b�� c�V ��
in �C �C � � fb� � b� �� 	 � b�g� 	 cmd� V �� � f	g� 	 �� V ��

e� �� e� �
let �C�b� �� V �� � W ���b�� e�� V �
case e� of

x � if b��x� � b� var or b��x� � b� acc then
�C � fb� � b� �� 	 � b� �g� 	 cmd� V � � f	g� 	 �� V �

else fail
l � �C � f��l� � b� �� 	 � b� �g� 	 cmd � V � � f	g� 	 �� V �

default � fail

letvar x �� e in c �
let �C�b� � V �� � W ���b�� e� V �
let �C ��b� � cmd� V ��� � W ���b��x � b� var�� c� V ��
in �C �C ��b� � cmd� V ���

letproc x�in x�� inout x�� out x�� c in c� �
let �C�b�� V �� � W ���b��proc �in x�� inout x�� out x�� c� V �
let �C ��b� cmd � V ��� �W ���b�� �proc �in x�� inout x�� out x�� c�x�c

�� V ��
in �C �C ��b� cmd� V ���

Fig� �� Algorithm W

e�e�� e�� e�� �
let �C�b� proc�b��� b�� var� b�� acc�� V �� � W ���b�� e�V �
let �C ��b� �� V ��� �W ���b�� e�� V ��
let C �� � case e� of

x � if b��x� � b� �� var then C �C � � fb� � � b���b� �� � b��g else fail
l � C �C � � fb� � � b��� ��l� � b��g
default � fail

in case e� of
x � if b��x� � b� �� var or b��x� � b� �� acc then �C �� � fb� �� � b��g�b� cmd � V ���

else fail
l � �C �� � f��l� � b��g�b� cmd� V ���
default � fail

Fig� �� Algorithm W � continued

Theorem�� �Soundness�� Suppose �C� b�� V �� � W ��� b�� p� V � succeeds� and

I is an instantiation such that I�C� is true� and I�b�� and I�b�� contain no type

variables� Then �	 I�b�� � p � I�b��

Proof� By induction on the structure of p� We show the most interesting case	
the other cases are similar and follow straightforwardly by induction�

Suppose �C� b� cmd � V ��� � W ��� b�� letvar x �� e in c� V �� I�C� is true and
I�b�� and I�b� � are closed� From W � we have C � C� �C� where

�C�� b� �� V �� � W ��� b�� e� V �

and
�C�� b� cmd � V ��� � W ��� b��x � b� � var �� c� V ��

Let I� extend I so that I��b� �� is closed� Clearly� I��b�� � I�b�� and I��b� � � I�b� �
since I� extends I and I�b�� and I�b� � are closed� Further� I��C�� is true since
I�C� is true� So by induction� �	 I��b�� � e � I��b� ��� or �	 I�b�� � e � I��b� ��� Also�
I��b��x � b� � var �� is closed and I ��C�� is true� since I�C� is true� So by a second
use of induction� �	 I��b��x � b� � var �� � c � I��b� � cmd � But I��b��x � b� � var �� �
I��b���x � I ��b� �� var �� so we have �	 I�b���x � I��b� �� var � � c � I�b� � cmd � Therefore�
by rule �letvar�� �	 I�b�� � letvar x �� e in c � I�b� � cmd � ut

Theorem�� �Completeness�� Suppose �	 I�b�� � p � � and FTV �b�� � V �

Then �C� b�� V �� � W ��� b�� p� V � succeeds and there exists an instantiation I � such

that I� extends I� except on variables in V � � V � I ��C� is true� and I��b�� � ��
Moreover� if W ��� b�� p� V � does not succeed� then it halts with fail�

Proof� By induction on the structure of p� We show two of the more interesting
cases� while and proc	 the others are similar�

Suppose �	 I�b�� � while e do c � � � cmd and FTV �b�� � V � Then� by rule
�while��� there is a type � such that �	 I�b�� � e � � � �	 I�b�� � c � � cmd � and
� � � � � So� by induction� �C� b��� V �� � W ��� b�� e� V � succeeds� V � V �� and there
exists an instantiation I� such that I� extends I� except on variables in V � � V �

I��C� is true and I��b��� � � � So b�� has the form b�� and I��b��� � � � And so b��
does not cause the
rst pattern match to fail�

Now FTV �b�� � V �� and I� and I agree on all variables in b� since no type
variable in V ��V is a member of b�� So �	 I��b�� � c � � cmd � By induction again�
�C �� b��� V ��� � W ��� b�� c� V �� succeeds� V � � V ��� and there is an instantiation I�
such that I� extends I�� except on type variables in V ��� V �� I��C�� is true and
I��b��� � � cmd � So b�� has the form b�� cmd and I��b��� � � � Thus� the second
pattern match succeeds and so does W ��� b��while e do c� V �� returning

�C � C� � fb�� � b��� � � b��g� � cmd � V �� � f�g�

where � �� V ��� Now I� extends I� except on variables in �V �� � V �� � �V � � V �
which is V �� � V since V � V � � V �� by Lemma �� Let I � � I��� �� � ��� Then I�

extends I except on variables in �V ���V ��f�g� or �V ���f�g��V since � �� V �
Finally� we establish that I��C�C��fb�� � b��� � � b��g� is true� By Lemma ��

V � contains all type variables in C and in b��� so neither � nor any variable in
V ���V � is a member of C or b��� Thus I� and I� agree on all type variables in C
and b��� So I ��C� is true and I��b��� � � � Likewise� by Lemma �� V �� contains all
type variables in C � and b��� Since � �� V ��� I� and I� agree on all type variables
in C� and b��� So I ��C �� is true and I��b��� � � � By the third hypothesis of rule
�while��� I���� � I��b��� and we�re done�

Now suppose that

�	 I�b�� � proc �in x�� inout x�� out x�� c � � proc���� �� var � �� acc�

and FTV �b�� � V � Then by rule �procedure�� we have

�	 I�b���x� � ��� x� � �� var � x� � �� acc� � c � � cmd

Let I� � I�� �� ��� 	 �� ��� � �� ��� where �� 	� � �� V � Since FTV �b�� � V �
then �� 	� and � do not occur in b�� So �	 I��b��x� � �� x� � 	 var � x� � � acc�� �
c � � cmd � Hence� by induction� W ��� b��x� � �� x� � 	 var � x� � � acc�� c� V �
f�� 	� �g� succeeds� returning �C� b�� V ��� V � f�� 	� �g � V �� and there exists an
instantiation I� such that I� extends I�� except on variables in V ���V �f�� 	� �g��
I ��C� is true� and I ��b�� � � cmd � So b� has the form b� cmd and I��b� � � � � Thus
the pattern match succeeds and so does

W ��	 b��proc �in x�� inout x�� out x�� c� V �

returning �C� b� proc��� 	 var � � acc�� V ��� Now I� extends I except on variables
�� 	 and �� So I� extends I except on variables in �V ���V �f�� 	� �g���f�� 	� �g
which is V � � V since �� 	� and � are in V � but not V � ut

It follows from these theorems that we can check whether p is typable with
respect to � and � by
rst runningW ��� �� p� ��� and� if it succeeds with �C� b�� V ��
then checking whether C is satis
able with respect to the partial ordering of
security levels� Checking the satis
ability of a �at set of subtyping inequalities
with respect to a partial order has been studied previously ���� ���� It is NP�
complete� in general� but can sometimes be done e�ciently� for example� if the
partial order is a disjoint union of lattices�

�� Principal Types

In addition to checking typability� type inference gives us the ability to com�
pute principal types� that document all possible types of a program� We use
constrained quanti
cation ���� for our principal types�

� ��� ��� with C
 b�
In such a type scheme� the type variables �� can be instantiated only in ways
that satisfy the subtype inequalities in C�

The instances of a type scheme are de
ned as follows�

De�nition�� �Instance�� ��� with C
 b�
 � if there exists an instantiation
I whose domain is �� such that I�C� is true and � I�b�� � �� In this case we say
that � is an instance of ��� with C
 b��
De�nition�� �Principal Type�� � is a principal type for p with respect to �
and � if for all �� �	 � � p � � i� �
 ��

By the Soundness and Completeness theorems above� we can compute a
principal type for p with respect to � and � by running �C� b�� V � � W ��� �� p� ���
verifying that C is satis
able� and forming the type scheme ��� with C
 b�� where
�� contains all type variables free in C or b�� �Note that the de
nition of the
instance relation could in fact have required that I�b�� � �	 the weaker de
nition
was adopted to allow for more type simpli
cation� as we discuss below��

Here is an example of type inference� Calling W on the procedure given in
Section ��� produces the principal type

��� �� �� o� �� �� ��
� �� �� �� �� �� 	� � with�
� � �� � � o� � � �� � � �� � � �� � � �� � �
� � � �� � � ��
� � �� � � �� � � ��
 � �� � � �� � � �� 	 � �� o � 	� � � �

�

 � proc��� 	 acc�

Such a complex principal type obviously cannot serve as useful documentation to
a programmer� For this reason� it is necessary� as a practical matter� to simplify
the principal types produced by W �

�� Type Simpli�cation

There is a natural notion of equivalence on type schemes� two type schemes are
equivalent i� they have the same set of instances� The idea of type simpli
cation
is to replace a type scheme with a simpler� yet equivalent� type scheme� The type
simpli
cations considered in ���� can be applied directly here�

Often we can make deductions about how a type scheme ��� with C
 b� can
be instantiated� For instance� suppose that C contains the inequalities � � 	
as well as 	 � �� Since � is a partial order� any instantiation that satis
es C
must instantiate � and 	 to the same type� Thus we can unify � and 	� In

general� we can collapse the strongly�connected components of C� Performing
this simpli
cation on the type scheme above yields the simpler principal type

��� o� �� �� � with f� � �� o � �� � � �� � � �g
 o proc��� � acc�

We can further simplify type schemes by exploiting the monotonicities of
types� For example� o proc��� � acc� is antimonotonic in �	 that is� boosting �
produces a smaller type� Since the only constraint on � is that � � �� we can in�
stantiate � to �� yielding a simpler principal type� Performing such monotonicity�
based instantiations repeatedly� we
nally obtain the principal type

��
 � proc��� � acc�

which has no constraints at all� With type simpli
cation� principal types become
useful documentation of the security requirements of programs�

� Related Work and Future Directions

One of the earliest e�orts in the area is Denning�s lattice model of secure in�
formation �ow ��� ��� Denning extended the work of Bell and LaPadula ���
by giving a secure��ow certi
cation algorithm for programs� This early work
has been followed by a variety of e�orts dealing with secure information �ow
��� �� �� �
� ��� ����

Some of these e�orts ��� �
� have been aimed at proving the soundness of
Denning�s analysis� These e�orts� however� prove soundness relative to an in�

strumented semantics whose validity is open to question� In contrast� we show
the soundness of our analysis with respect to a standard natural semantics�

The work of Ban atre et al� ��� is similar in spirit to our work� They give a
compile�time algorithm for detecting information �ow in sequential programs�
and they justify their algorithm in terms of a noninterference property� Their
algorithm works by building a
nal accessibility graph indicating whether the
contents of one variable at some point in the program can �ow into an instance of
a variable at some other point� The drawback here is that the number of vertices
in the
nal accessibility graph is at least linear in the size of the program�
This means that� unlike simpli
ed principal types�
nal graphs cannot serve as
practical program documentation�

Palsberg and !rb"k ���� give a type system for trust analysis in the simply�
typed � calculus with a trust coercion� This �unsafe� coercion permits untrusted
values to be explicitly coerced to trusted values� However� subject reduction is
the only soundness property shown for their type system� It is unclear what one
can say about the soundness of their system in terms of secure information �ow�
The trust coercion certainly rules out our noninterference theorem�

Another recent type�based approach is Abadi�s work on a version of the pi
calculus� called spi� extended to express cryptographic protocols ���� Also related
is Necula and Lee�s recent work on proof�carrying code ����

In the future� it would be desirable to extend the core language considered
here with a number of important features� including concurrency� networking�

and exception handling� The impact of such features on the noninterference
property needs to be investigated�

References

	� Abadi� M�� Secrecy by Typing in Cryptographic Protocols �Draft�� unpublished
manuscript� DEC Systems Research Center� December 	����

�� Andrews� G� and Reitman� R�� An Axiomatic Approach to Information Flow in
Programs� ACM Trans� on Programming Languages and Systems� �� 	� pp� ������
	����

�� Ban�atre� J�� Bryce� C�� and Le M�etayer� D�� Compile�time Detection of Information
Flow in Sequential Programs� Proc� �rd ESORICS� LNCS ���� pp� ������ 	����

�� Bell� D� and LaPadula� L�� Secure Computer System� Mathematical Foundations
and Model� MITRE Corp� Tech Report M������� 	����

�� Denning� D�� A Lattice Model of Secure Information Flow� Comm of the ACM �
	�� �� pp� �������� 	����

�� Denning� D� and Denning� P�� Certi
cation of Programs for Secure Information
Flow� Comm of the ACM � ��� �� pp� �����	�� 	����

�� Goguen� J� and Meseguer� J�� Security Policies and Security Models� Proc� ����
IEEE Symposium on Security and Privacy� pp� 		���� 	����

�� Mizuno� M� and Schmidt� D�� A Security Flow Control Algorithm and its Deno�
tational Semantics Correctness Proof� Formal Aspects of Computing� ���A� pp�
�������� 	����

�� Necula� G�� Proof�Carrying Code� to appear in Proc� ��th Symp� on Principles of

Programming Languages� January 	����
	�� �rb k� P�� Can You Trust Your Data!� Proc� ���	 TAPSOFT� LNCS �	�� pp�

�������� 	����
		� Palsberg� J� and �rb k� P�� Trust in the ��calculus� Proc� ���	 Static Analysis

Symposium� LNCS ���� pp� �	������ 	����
	�� Reynolds� J� Preliminary Design of the Programming Language Forsythe� Technical

Report CMU�CS����	��� Carnegie Mellon University� June 	����
	�� Smith� G�� Principal Type Schemes for Functional Programs with Overloading and

Subtyping� Science of Computer Programming� ��� pp� 	������� 	����
	�� Smith� G� and Volpano� D�� Polymorphic Typing of Variables and References� ACM

Trans� on Programming Languages and Systems� 	�� �� pp� �������� 	����
	�� Tiuryn� J�� Subtype Inequalities� Proc� ���� IEEE Symp� on Logic in Computer

Science� pp� �����	�� 	����
	�� Tofte� M�� Type Inference for Polymorphic References� Information and Computa

tion� ��� pp� 	���� 	����
	�� Volpano� D�� Smith� G� and Irvine� C�� A Sound Type System for Secure Flow

Analysis� J� Computer Security� �� �� pp� 	��	� 	����
	�� Wand� M� and O�Keefe� P�� On the Complexity of Type Inference with Coercion�

Proc� ACM Conf� on Functional Programming Languages and Computer Architec

ture� pp� �������� 	����
	�� Wright� A�� Simple Imperative Polymorphism� Journal of Lisp and Symbolic Com

puting� �� �� pp� �������� 	����

This article was processed using the LaTEX macro package with LLNCS style

